Archenteron precursor cells can organize secondary axial structures in the sea urchin embryo.

نویسندگان

  • H Benink
  • G Wray
  • J Hardin
چکیده

Local cell-cell signals play a crucial role in establishing major tissue territories in early embryos. The sea urchin embryo is a useful model system for studying these interactions in deuterostomes. Previous studies showed that ectopically implanted micromeres from the 16-cell embryo can induce ectopic guts and additional skeletal elements in sea urchin embryos. Using a chimeric embryo approach, we show that implanted archenteron precursors differentiate autonomously to produce a correctly proportioned and patterned gut. In addition, the ectopically implanted presumptive archenteron tissue induces ectopic skeletal patterning sites within the ectoderm. The ectopic skeletal elements are bilaterally symmetric, and flank the ectopic archenteron, in some cases resulting in mirror-image, symmetric skeletal elements. Since the induced patterned ectoderm and supernumerary skeletal elements are derived from the host, the ectopic presumptive archenteron tissue can act to 'organize' ectopic axial structures in the sea urchin embryo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern formation during gastrulation in the sea urchin embryo.

The sea urchin embryo follows a relatively simple cell behavioral sequence in its gastrulation movements. To form the mesoderm, primary mesenchyme cells ingress from the vegetal plate and then migrate along the basal lamina lining the blastocoel. The presumptive secondary mesenchyme and endoderm then invaginate from the vegetal pole of the embryo. The archenteron elongates and extends across th...

متن کامل

Regulative capacity of the archenteron during gastrulation in the sea urchin.

Gastrulation in the sea urchin involves an extensive rearrangement of cells of the archenteron giving rise to secondary mesenchyme at the archenteron tip followed by the foregut, midgut and hindgut. To examine the regulative capacity of this structure, pieces of the archenteron were removed or transplanted at different stages of gastrulation. After removal of any or all parts of the archenteron...

متن کامل

Spatial expression of a forkhead homologue in the sea urchin embryo

Echinoderms are the sister group of the chordates and hemichordates within the deuterostomes. They lack a notochord or any structures obviously homologous with it. To gain insight into developmental mechanisms important in the origin and early evolution of chordates, we investigated sea urchin homologues of chordate genes that are implicated in notochord formation, viz. Brachyury and HNF-3 beta...

متن کامل

The Mechanisms and Mechanics of Archenteron Elongation during Sea Urchin Gastrulation

Continued elongation of the archenteron during sea urchin gastrulation has long been thought to occur as a result of contraction of filopodia which are extended by secondary mesenchyme cells from the tip of the gut rudiment to the blastocoel roof. Here we present four lines of evidence which strongly suggest that forces generated within the archenteron itself can cause it to elongate. First, co...

متن کامل

Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2.

Few treatments are known that perturb the dorsoventral axis of the sea urchin embryo. We report here that the dorsoventral polarity of the sea urchin embryo can be disrupted by treatment of embryos with NiCl2. Lytechinus variegatus embryos treated with 0.5 mM NiCl2 from fertilization until the early gastrula stage appear morphologically normal until the midgastrula stage, when they fail to acqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 124 18  شماره 

صفحات  -

تاریخ انتشار 1997